近期,GPT-4V的开源替代方案在中国的顶尖学府清华、浙大等的推动下,出现了一系列性能优异的开源视觉模型。其中,LLaVA、CogAgent和BakLLaVA是三种备受关注的开源视觉语言模型。
LLaVA是一个端到端训练的多模态大模型,它将视觉编码器和用于通用视觉和语言理解的Vicuna相结合,具备令人印象深刻的聊天能力。而CogAgent是在CogVLM基础上改进的开源视觉语言模型,拥有110亿个视觉参数和70亿个语言参数。
另外,BakLLaVA是使用LLaVA1.5架构增强的Mistral7B基础模型,已经在多个基准测试中优于LLaVA213B。这三种开源视觉模型在视觉处理领域具有极大的潜力。
LLaVA在视觉聊天和推理问答方面表现出接近GPT-4水平的能力。在视觉聊天方面,LLaVA的表现相对于GPT-4的评分达到了85%,在推理问答方面更是达到了92.53%的超过GPT-4的新SoTA。LLaVA在回答问题时,能够全面而有逻辑地生成回答,并且可以以JSON格式输出。
它不仅可以从图片中提取信息并回答问题,还可以将图片转化为JSON格式。LLaVA还可以识别验证码、识别图中的物体品种等,展现出了强大的多模态能力。在性能上接近GPT-4的情况下,LLaVA具有更高的成本效益,训练只需要8个A100即可在1天内完成。
CogAgent作为在CogVLM基础上改进的开源视觉语言模型,拥有更多的功能和性能优势。它支持更高分辨率的视觉输入和对话答题,能够处理超高分辨率图像输入。
CogAgent还提供了可视化代理的能力,能够返回任何给定任务的计划、下一步行动和带有坐标的具体操作。它还增强了与图形用户界面相关的问题解答功能,可以处理与网页、PC应用程序、移动应用程序等任何图形用户界面截图相关的问题。另外,通过改进预培训和微调,CogAgent还增强了OCR相关任务的能力。这些功能的提升使得CogAgent在多个基准测试上实现了最先进的通用性能。
BakLLaVA是使用LLaVA1.5架构增强的Mistral7B基础模型,具备更好的性能和商用能力。BakLLaVA在多个基准测试中优于LLaVA213B,并且可以在某些数据上进行微调和推理。虽然BakLLaVA在训练过程中使用了LLaVA的语料库,不允许商用,但BakLLaVA2则采用了更大的数据集和更新的架构,超越了当前的LLaVA方法,具备商用能力。
文章内容仅供阅读,不构成投资建议,请谨慎对待。投资者据此操作,风险自担。
12 月 3 日消息,公开信息显示,美团关联公司北京三快科技有限公司因未对平台商户证照资质进行真实性审查,被北京市市场监督管理局罚款 20 万元,没收违法所得约 46 万元。
奥维云网(AVC)推总数据显示,2024年1-9月明火炊具线上零售额94.2亿元,同比增加3.1%,其中抖音渠道表现优异,同比有14%的涨幅,传统电商略有下滑,同比降低2.3%。
“以前都要去窗口办,一套流程下来都要半个月了,现在方便多了!”打开“重庆公积金”微信小程序,按照提示流程提交相关材料,仅几秒钟,重庆市民曾某的账户就打进了21600元。
华硕ProArt创艺27 Pro PA279CRV显示器,凭借其优秀的性能配置和精准的色彩呈现能力,为您的创作工作带来实质性的帮助,双十一期间低至2799元,性价比很高,简直是创作者们的首选。